MANUAL OFICIAL

de Evaluación de Suelos

25 y 26 de octubre de 2019 Aguascalientes, Ags.

Editado: Cerón-González, A.

Revisado y corregido: Barajas-Alcalá, A. y Olivares-Martínez, L.D.

Grupo de trabajo del Concurso Nacional de Evaluación de Suelos, Secretaría de Acción Juvenil de la Sociedad Mexicana de la Ciencia del Suelo A.C.: Barajas-Alcalá, A., Cerón-González, A., Amador-Sierra, J. y Rojas-Pérez, L.

Citación recomendada

Cerón-González, A., Barajas-Alcalá, A., Amador-Sierra, J. y Rojas-Pérez, L. (2019). Manual Oficial del 2do Concurso Nacional de Evaluación de Suelos. Secretaría de Acción Juvenil, Sociedad Mexicana de la Ciencia del Suelo, México.

Contenido

Información general
Entrenamiento (día 1)
La competencia (día 2)5
Equipos y materiales de referencia5
PARTE I: CARACTERÍSTICAS DEL SITIO
Uso del suelo
Posición en el terreno
Gradiente de inclinación (° pendiente)
Material parental 10
Pedregosidad superficial
Erosión
PARTE II: DESCRIPCIÓN DEL PERFIL DE SUELO
Designación de horizontes
Prefijo numérico
Horizonte genético
Sufijo
Subdivisiones numéricas
Límite
Textura
Color
Estructura
Consistencia
Contenido de carbonatos
Revestimientos
PARTE III. CARACTERÍSTICAS E INTERPRETACIONES DEL PERFIL DE SUELO 28

Conductividad hidráulica	. 28
Profundidad efectiva del suelo	29
Capacidad de retención de agua disponible	29
Interpretaciones	. 30
Uso potencial: producción de jitomate	. 31
Uso potencial: instalción de campos eólicos	. 32
Uso potencial: urbanización	. 33
PARTE IV: CLASIFICACIÓN DE SUELO	. 34
World Reference Base para el recurso suelo (2015)	34
Referencias	. 35

Información general

Como parte de las celebraciones de la Década Internacional de los Suelos y el 44° Congreso Mexicano de la Ciencia del Suelo "El suelo, donde todo comienza", se ha organizado el 2^{do} Concurso Nacional de Evaluación de Suelos (CNESuelos) el 25 y 26 de octubre de 2019, en la ciudad de Aguascalientes, Ags. Esta es una gran oportunidad para que los estudiantes, investigadores y personas interesadas en el recurso suelo, a nivel nacional, puedan interactuar, experimentar y difundir sus conocimientos de esta Ciencia.

El objetivo de esta contienda es que los participantes usen sus conocimientos y habilidades prácticas para describir, comprender e interpretar las características del suelo en campo. Los participantes (de manera individual y en equipos) describirán dos perfiles de suelo utilizando herramientas de campo básicas y estándares internacionales. Los ganadores se definen por la correcta descripción, clasificación y evaluación del perfil de suelo.

El 2^{do} CNESuelos constará de <u>un día</u> de entrenamiento y práctica en la descripción, clasificación e interpretación del suelo y del paisaje, seguido de <u>un día</u> de competencia. Durante las sesiones prácticas, edafólogos expertos en México darán breves sesiones de información sobre diferentes aspectos del suelo y los factores formadores regionales (clima, biota, material parental, relieve y tiempo). Cada equipo tendrá un entrenador, que asistirá a los participantes en el campo durante el día de entrenamiento, pero no durante la competencia. El día de la competencia consistirá en la descripción, clasificación e interpretación de dos perfiles de suelo, uno de manera individual y otro en equipo.

Entrenamiento (día 1)

Un equipo de edafólogos locales y nacionales brindará una descripción general del sitio, las pautas de descripción del perfil y los estándares de clasificación de suelos.

Las sesiones cortas en el aula serán seguidas por la capacitación práctica de procedimientos y técnicas de campo. La variabilidad geográfica de los sitios de estudio permitirá estudiar una edafodiversidad notable, con una gama de condiciones topográficas, de material parental y de régimen de humedad del suelo. Se utilizará la Base Referencial Mundial del Recurso Suelo 2014 (actualización 2015) para la clasificación del suelo y el manual oficial del 2° CNESuelos para la descripción del perfil.

La competencia (día 2)

Los participantes describirán y clasificarán dos perfiles del suelo, uno de forma individual y otro en equipo, en función de las herramientas de campo y las normas presentadas en este manual. También se puntuará la interpretación de la capacidad que tiene el suelo para desempeñarse en diferentes usos potenciales.

Equipos y materiales de referencia

Los siguientes materiales y equipos serán suministrados durante el concurso.

- Goteros con HCl al 10 %, HCl 1M y agua oxigenada al 30 %;
- Botella de agua;
- Recipiente para muestras de suelo y cuchillo edáfico; y
- Lápices (No. 2).

Exceptuando los reactivos químicos, los competidores podrán traer su propio equipo de la lista anterior si así lo desean.

Es obligatorio traer consigo:

• Carta de colores Munsell y calculadora sencilla.

Los siguientes materiales de referencia y apoyo serán permitidos durante el concurso:

- Este manual;
- Cuchillo;

- Brújula;
- Aspersor;
- Charolas;
- Guía para la descripción de suelos (FAO, 2009); y
- Base referencial mundial del recurso suelo (IUSS Grupo de Trabajo de la WRB, 2015).

Cualquier competidor que se encuentre en posesión de material distinto a los enumerados anteriormente será descalificado. No está permitido, ni se tolerará el uso de dispositivos electrónicos (celulares, cámaras, relojes inteligentes, etcétera) durante el día del concurso.

PARTE I: CARACTERÍSTICAS DEL SITIO

Uso del suelo

Conteste en el formato de evaluación el código que determina la clase de uso de suelo de acuerdo con la Tabla 1.

Tabla 1. Clasificación de usos de suelo (FAO, 2009)

Código	Clase
A	Agricultura
M	Agricultura mixta
Н	Ganadería
F	Forestal
Р	Protección de la naturaleza
S	Asentamientos, industrias
Y	Zona militar
О	Otros usos de la tierra
U	Sin uso ni manejo aparente

Posición en el terreno

Determine la posición del terreno de acuerdo con las Figuras 1 y 2. Use los códigos utilizados en las Tablas 2 y 3.

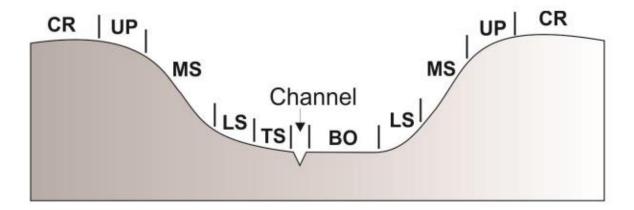


Figura 1. Posiciones del terreno en terrenos ondulados y montañosos (adaptado de FAO, 2009). CR: cresta; UP: hombro; MS: ladera alta; LS: ladera baja; TS: piedemonte; y BO: planicie.

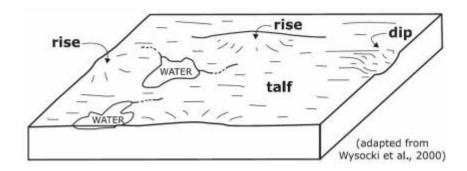


Figura 2. Posición del terreno en terrenos planos y casi planos. Rise: elevación; dip: depresión; y talf: planicie.

Tabla 2. Códigos de terrenos ondulados y montañosos.

Código	Posición	
CR	Cresta (CR)	
НВ	Hombro (UP)	
LA	Ladera alta (MS)	
LB	Ladera baja (LS)	
PM	Piedemonte (TS)	
PL	Planicie (BO)	

Tabla 3. Códigos de terrenos planos y casi planos.

Código	Posición
E	Elevación (rise)
Р	Planicie (talf)
D	Depresión (dip)

Gradiente de inclinación (° pendiente)

Determine el gradiente de inclinación en porcentaje, de acuerdo con la Tabla 4.

Tabla 4. Clases y códigos de gradiente de inclinación (adaptado de FAO, 2009)

Código	Clase	Gradiente de inclinación (°)
01	Nivel	0 - 2
02	Suavemente inclinado	2.1 - 5
03	Inclinado	5.1 - 10
04	Moderadamente inclinado	10.1 - 15
05	Fuertemente inclinado	15.1 - 30
06	Escarpado	30.1 - 60
07	Muy escarpado	> 60.1

Material parental

Determine el material parental de acuerdo con la Tabla 5.

Tabla 5. Tipos de posibles materiales parentales (modificado de FAO, 2009)

Código	Litología	
I	Roca ígnea	
M	Roca metamórfica	
S	Roca sedimentaria	
U	Sedimentos no consolidados	

Pedregosidad superficial

Estime la abundancia de los fragmentos gruesos superficiales (> 2 mm) en volumen, de acuerdo con la Tabla 6 y con ayuda de la Figura 3.

Tabla 6. Abundancia de fragmentos gruesos superficiales por volumen (modificado de FAO, 2009)

Código	Clase	%
N	Ninguno	0
Р	Pocos	0.1 - 5
С	Comunes	5.1 - 15
M	Muchos	15.1 - 40
A	Abundantes	40.1 - 80
D	Dominantes	> 80

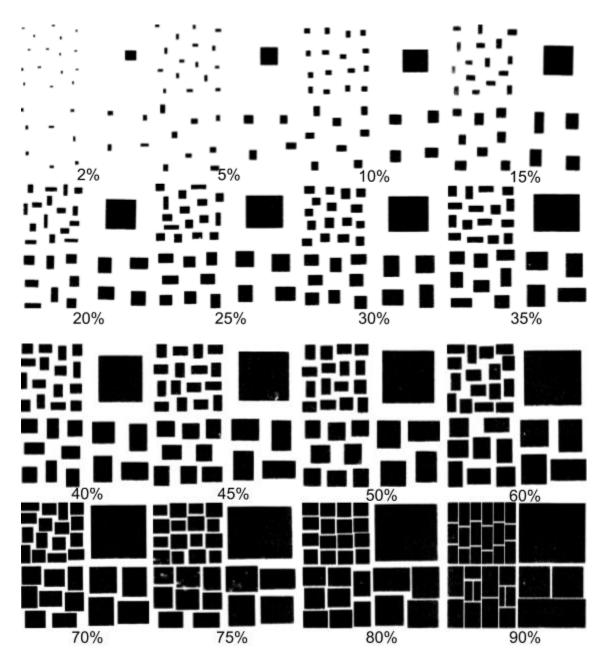


Figura 3. Relación porcentual para fragmentos gruesos y otros edaforasgos, como moteados, concreciones, etcétera (modificado de Schoeneberger et al., 2012).

Erosión

Determine la categoría de erosión dominante, según la Tabla 7 y el grado de erosión usando la Tabla 8.

Tabla 7. Clasificación de erosión por categoría (modificado de FAO, 2009)

Código	Clase	
N	Sin erosión aparente	
HL	Erosión hídrica (erosión laminar)	
WG	Erosión hídrica (erosión en cárcavas)	
HG	Erosión hídrica (erosión lineal)	
HT	Erosión hídrica (erosión en túneles)	
AV	Erosión o depósito por agua y viento	
M	Movimiento de masas	
DV	Depósito por viento	

Tabla 8. Clasificación de la erosión por grado (modificado de FAO, 2009)

Código	Clase	Descripción	
N	Sin erosión	Sin erosión	
L	Ligera	Algunas evidencias de daño en horizontes superficiales	
M	Moderada	Evidencias claras de remoción de horizontes superficiales	
S	Severa	Horizontes superficiales completamente removidos y horizontes subsuperficiales expuestos	
Е	Extrema	Remoción severa de horizontes profundos	

PARTE II: DESCRIPCIÓN DEL PERFIL DE SUELO

Designación de horizontes

La designación de horizontes incluye un prefijo numérico, un horizonte genético con letra mayúscula, un sufijo con letra minúscula y si es necesario, una subdivisión numérica.

Prefijo numérico

En suelos minerales los números arábigos se usan como prefijos para indicar que un suelo no se ha formado completamente en un mismo tipo de material, es decir, existe una discontinuidad en el material parental. Una discontinuidad se reconoce por un cambio significativo en la distribución del tamaño de partículas o conjunto de minerales. La estratificación que se observa en los suelos formados por aluvión no se designa como una discontinuidad, a menos que la distribución del tamaño de partícula difiera marcadamente de una capa a otra (que sea fuerte el contrastante entre el tamaño de partículas).

Cuando se identifica una discontinuidad, la numeración del prefijo comienza en el material subyacente al depósito superficial y se designa añadiendo el prefijo '2' a los horizontes y capas que se forman en el material subyacente a la discontinuidad (obsérvese que '1' está implícito y no se agrega al depósito superficial). No hay un número definido de horizontes o capas en las discontinuidades. Si se encuentra otra discontinuidad debajo del material con el prefijo '2', los horizontes y capas formados en el tercer material se designan con el prefijo '3'. Por ejemplo: Ap, Bt1, 2Bt2, 2Bt3, 3BC. Para el anterior ejemplo, los sufijos numéricos que designan las subdivisiones del horizonte Bt continúan en orden consecutivo a través de la discontinuidad. Por otra parte, un prefijo de discontinuidad no se usa para distinguir material de horizontes enterrados (b) que se formaron en un material similar al del depósito superpuesto (sin discontinuidad). Por ejemplo: A, Bw, C, Ab, Bwb1, Bwb2, C.

Si no hay discontinuidad presente, coloque un guion (—) en el cuadro de prefijo numérico para cada horizonte.

Horizonte genético

La designación de horizontes debe seguir las indicaciones de la Tabla 9.

Tabla 9. Horizontes genéticos (FAO, 2009)

Código	Descripción	
	Horizontes minerales	
A	Horizonte superficial o subsuperficial con acumulación de materia orgánica, usualmente de colores más negruzcos y/o con menor contenido de arcilla que los horizontes subyacentes.	
E	Horizonte subsuperficial caracterizado por la pérdida de arcilla, hierro, aluminio o alguna combinación de estos; usualmente de colores más claros que el color de los horizontes suprayacentes A y subyacentes B.	
В	Horizonte mineral caracterizado por una o más de las siguientes: una concentración de arcilla, hierro, aluminio o una combinación de estos; una mejor estructuración edáfica que los horizontes subyacentes y suprayacentes; colores más fuertes (croma alto y/o matiz rojizo) que los horizontes suprayacentes y subyacentes.	
С	Material consolidado o no consolidado, usualmente intemperizado químicamente, muy poco afectado por procesos edafogenéticos.	
R	Duro y fuertemente cementado. Lecho rocoso, que no puede ser penetrado por el cuchillo edáfico.	
Horizontes orgánicos		
О	Horizontes dominados por acumulación de materiales orgánicos. Los horizontes O no están saturados con agua por periodos prolongados. Comunes en suelos forestales.	
Н	Horizontes dominados por acumulación de materiales orgánicos. Los horizontes H están saturados con agua por periodos prolongados, o estuvieron saturados alguna vez, pero ahora tienen un drenaje artificial. Comunes en suelos pantanosos.	

La columna letra debe indicar las designaciones de horizontes maestros (es decir, O, H, A, E, B, C o R) y puede incluir las combinaciones de estas letras (por ejemplo, AB, BC, etc.). Los horizontes C y R solo se identifican en la columna letra si están dentro de la profundidad de evaluación. Sin embargo, éstos no se describirán de otra manera, por lo que todas las otras columnas en esa fila, en la hoja de evaluación, deberán marcarse con un guion (—).

Horizontes de transición

Se tomará en cuenta la presencia de horizontes de transición y horizontes compuestos. Los horizontes genéticos de transición tienen características tanto de horizonte suprayacente como del subyacente, pero se parece más al horizonte que se designa primero, por ejemplo, AE, AB, AC, EA, EB, BA, BE, BC, CA, CB.

Los horizontes en los que las partes distintas tienen propiedades reconocibles de dos tipos de horizontes mayores se indican como en los casos anteriores, pero las dos letras mayúsculas se encuentran separadas por una diagonal (/), , en el que el primer componente del horizonte designado es dominante y rodea el material del segundo horizonte, por ejemplo, A/B, A/E, A/C, E/A, E/B, B/A, B/E, B/C, C/A, C/B.

Sufijo

Se escribirán los sufijos en letras minúsculas para designar los tipos específicos de horizontes genéticos, si es necesario, por ejemplo: Ap, Bw, Bt, Btk, Cg. Si no hay ninguno, deberá marcarse con un guion (—). Los sufijos se describen en la Tabla 10.

El sufijo 'b' es el que se usará sólo cuando un suelo esté sepultado, incluyendo un horizonte A, siempre y cuando esté claramente expresado. El sufijo 'w' se utilizará únicamente en los horizontes genéticos B que presenten un cambio de color y/o estructura; asimismo es incompatible en combinación con cualquier otro sufijo, con excepción del sufijo 'b'.

Tabla 10. Sufijos (FAO, 2009)

Sufijo	Descripción	Usado para
a	Material orgánico altamente descompuesto	Horizontes orgánicos
b	Horizonte genético enterrado	Horizontes minerales, no crioturbados
С	Concreciones o nódulos	Horizontes minerales
d	Capa y horizonte denso	Horizontes minerales, no con m
e	Material orgánico moderadamente descompuesto	Horizontes orgánicos
g	Condiciones estágnicas	Sin restricción
h	Acumulación de materia orgánica	Horizontes minerales
i	Superficies de deslizamiento	Horizontes minerales
i	Materia orgánica ligeramente descompuesta	Horizontes orgánicos
j	Acumulación de jarosita	Sin restricción
k	Acumulación de carbonatos edafogenéticos	Sin restricción
1	Franja capilar de moteados (gleyzación)	Sin restricción
m	Fuerte cementación o endurecimiento	Horizontes minerales
n	Acumulación de sodio intercambiable	Sin restricción
О	Acumulación residual de sesquióxidos	Sin restricción
р	Labranza u otra acción humana	Sin restricción. E, B, C como Ap
q	Acumulación de sílice edafogenética	Sin restricción
r	Fuerte reducción	Sin restricción

s	Acumulación iluvial de sesquióxidos	Horizontes B
t	Acumulación iluvial de arcilla silicatada	Horizontes B y C
u	Materiales urbanos y otros antrópicos	Horizontes H, O, A, E, B y C
v	Ocurrencia de plintita	Sin restricción
W	Desarrollo de color o estructura	Horizontes B
Х	Características de fragipán	Sin restricción
y	Acumulación edafogenética de yeso	Sin restricción
Z	Aculumación edafogenética de sales más solubles que el yeso	Sin restricción
@	Evidencia de crioturbación	Sin restricción

Subdivisiones numéricas

Ingrese números arábigos cuando un horizonte identificado por la misma combinación de letras deba subdividirse, por ejemplo, Bt1, Bt2. Si no se usa una distinción subordinada o una subdivisión numérica con un horizonte genético dado, ingrese un guion (—) en el espacio apropiado de la hoja de evaluación.

Límite

Determine la profundidad (cm) desde la superficie del suelo mineral hasta el límite inferior de cada horizonte, excepto del último horizonte. Determine la distinción de cada límite (Tabla 11a) y la topografía (Tabla 11b).

Tabla 11. Clasificación de los límites de horizontes según su distinción y topografía (modificado de FAO, 2009)

Distinción		
Código	Clase	cm
A	Abrupto	< 2
С	Claro	2.1 - 5
G	Gradual	5.1 - 15
D	Difuso	> 15

Topografía		
Código	Clase	
S	Suave	
О	Ondulado	
I	Irregular	
Q	Quebrado	

Textura

Estime el contenido de arcilla, limo y arena para cada horizonte. Determine la clase textural usando el diagrama ternario para la clasificación textural (Figura 4) e indique el código indicado en la Tabla 12. Además, puede apoyarse en la Tabla 13.

Tabla 12. Codificación de las clases texturales (FAO, 2009)

Código	Clase	Categoría general
A	Arenosa	
AC	Arenosa franca	Arena
CA	Franco arenosa	
CRA	Franco-arcillo arenosa	
CL	Franco limosa	Even ee
CRL	Franco-arcillo limosa	Franco
CR	Franco arcillosa	
С	Francosa	
L	Limosa	Limo
RA	Arcillo arenosa	
RL	Arcillo limosa	Arcilla
R	Arcillosa	

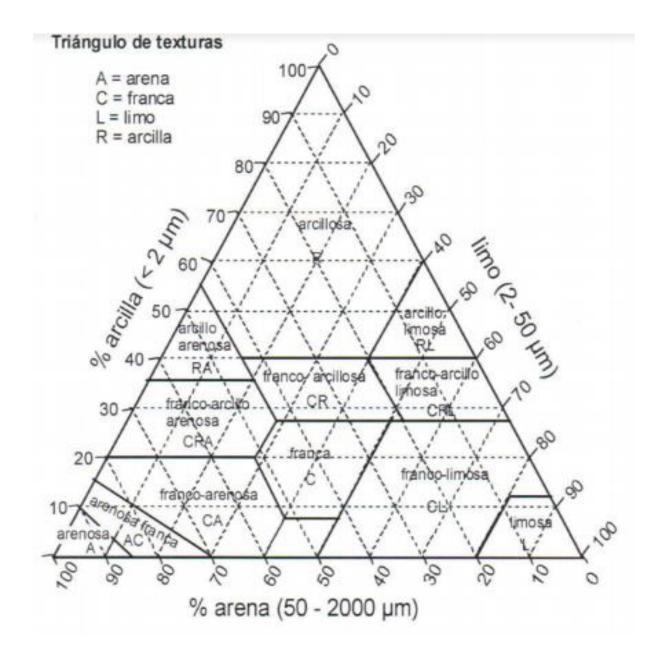


Figura 4. Relación porcentual de los constituyentes de la tierra fina y sus clases texturales (Siebe et al., 2009)

Tabla 12. Guía para la determinación textural. Modificado de Siebe et al., 2009.

No.	Descripción	seguir No.	Código
1	Intentar formar con la muestra un rollito del grosor de un lápiz a) Moldeable b) No moldeable	4 2	
2	Palpar la consistencia entre los dedos índice y pulgar a) Adhesiva, se adhiere ligeramente al dedo b) No adhesiva, no moldeable	3	CA
3	Frotar la muestra entre las palmas de las manos a) Consistencia muy harinosa, no se perciben arenas b) Consistencia muy harinosa, se perciben arenas (<50%) c) Muy arenosa (50-85%), queda material fino en las palmas d) Muy arenosa (>85%), no queda material fino en las palmas		L CL AC A
4	Intentar moldear un rollo del grosor de una aguja para tejer a) Moldeable, superficie opaca, consistencia harinosa b) Moldeable, consistencia plástica, pegajosa c) No moldeable, se adhiere al dedo, se perciben arenas (>46%)	5 6	CRA
5	Evaluar la consistencia a) Adhesiva, harinosa, se agrieta fácilmente al presionar b) Ligeramente harinosa, casi no se agrieta, muy moldeable c) Granos de arena perceptibles, se agrieta al presionar		CL CRL C
6	Evaluar la superficie de la muestra después de friccionarla con la uña del dedo a) Superficie opaca, casi no se perciben arenas b) Superficie opaca a ligeramente brillosa, granos de arena perceptibles c) Superficie brillosa	7	CR RA
7	Evaluar la consistencia entre los dientes a) Rechina b) Consistencia de mantequilla		RL R

Color

Utilice la tabla de colores Munsell (*Munsell soil color chart*), para describir el color en húmedo de cada horizonte. Los colores deben ser designados según las clases asignadas para cada matiz (*hue*), luminosidad (*value*) y croma (*chroma*). En la descripción del color del suelo, es recomendable hacerlo directamente con la luz del sol.

Estructura

La estructura es la disposición natural de las partículas del suelo en agregados que resultan de procesos edafogénicos. En esta competencia, se evaluarán el grado de desarrollo y el tipo de estructura. El *grado de desarrollo* describe la naturalidad del arreglo de los agregados, mientras que el *tipo* hace referencia a la geometría dominante en los agregados individuales. Haga uso de la Tabla 13 y 14, así como de la Figura 5.

Tabla 13. Clasificación del grado de desarrollo de la estructura (FAO, 2009)

Código	Clase	Descripción
D	Débil	Los agregados son raramente observables <i>in situ</i> . Cuando se disturba se crea una mixtura de pocos agregados y mucho material suelto.
M	Moderada	Los agregados son observables y se distingue el arreglo de superficies. Cuando se disturba se crea una mixtura de muchos agregados enteros, algunos agregados quebrados y poco material suelto.
F	Fuerte	Los agregados son claramente observables y presentan un prominente arreglo. Cuando se disturba el material, comúnmente se rompe en agregados.

Tabla 14. Clasificación de la estructura del suelo (Schoeneberger et al., 2012)

Código	Tipo	Descripción	
ι	Unidades estructurales de suelo natural (estructura edafogenética)		
GR	Granular	Pequeños poliedros con caras curveadas o muy irregulares	
BAK	Bloques angulares	Poliedros con caras que intersectan en ángulos agudos (planos)	
SBK	Bloques subangulares	Poliedros con caras subredondeadas	
PL	Laminar	Unidades planas	
CU	Cuneiforme	Lentes elípticas entrelazadas que terminan en ángulos agudos, limitadas por caras de deslizamiento (slickensides).	
PR	Prismática	Unidades elongadas verticalmente	
COL	Columnar	Unidades elongadas verticalmente con cimas redondeadas	
	Sin estructura		
SGR	Grano simple	Unidades sin estructura, no coherentes, por ejemplo, arena suelta	
MA	Masivo	Unidades sin estructura, coherentes y masivos	

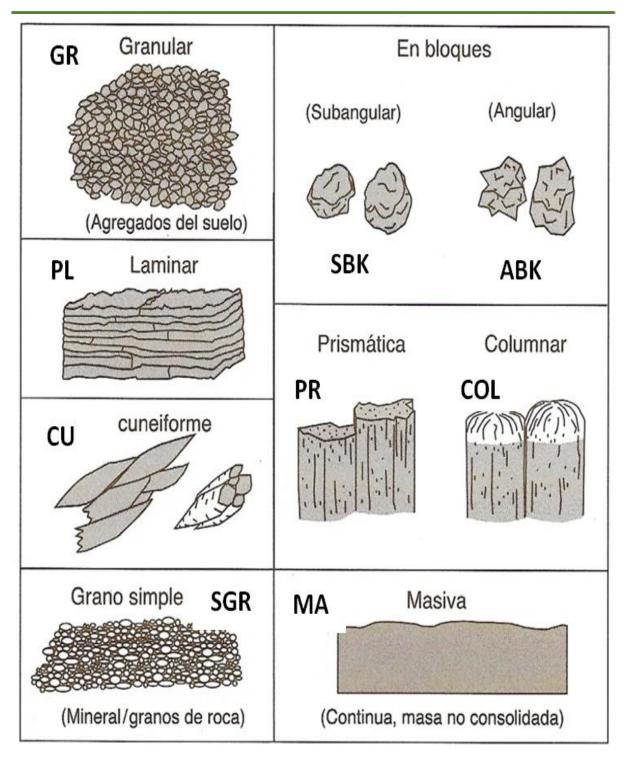


Figura 5. Ejemplos de los tipos de estructura de suelo (modificado de Schoeneberger et al., 2012)

Consistencia

La consistencia se estima midiendo la resistencia del suelo a la deformación y se determina humedeciendo un agregado. Haga uso de la Tabla 15.

Tabla 15. Clasificación de la consistencia del suelo (FAO, 2009).

Código	Consistencia	Criterio
LO	Suelto	No coherente
VFR	Muy Friable	Se aplasta bajo presión leve
FR	Friable	Se aplasta fácilmente bajo presión suave a moderada entre el pulgar y el índice
FI	Firme	Se aplasta bajo presión moderada entre el pulgar y el índice, pero la resistencia es claramente perceptible
VFI	Muy firme	Se aplasta bajo fuerte presión; apenas moldeable entre pulgar e índice
EFI	Extremadamente firme	Se aplasta sólo bajo una presión muy fuerte; no puede ser aplastado entre el pulgar y el índice, debe ser roto poco a poco con toda la mano

Contenido de carbonatos

Los carbonados en los suelos se encuentran de forma residual del material parental (calcárico) o como resultado de la neoformación *in situ* (cálcico). La presencia de carbonato de calcio (CaCO₃) se establece a través de la adición de gotas de HCl (ácido clorhídrico) al 10%. El grado de efervescencia del gas de dióxido de carbono es indicativo de la cantidad de carbonato de calcio presente. Las clases para la reacción de carbonatos en el suelo se definen en la Tabla 16.

Tabla 16. Clasificación de la reacción del carbonato de calcio (modificado de FAO, 2009)

Código	%	Descripción	Criterio
N	0	No calcáreo	Sin efervescencia
SL	0.1 - 2	Ligeramente calcáreo	Se escucha la efervescencia, pero no es visible
МО	2.1 - 10	Moderadamente calcáreo	Efervescencia visible
ST	10.1 - 25	Fuertemente calcáreo	Efervescencia fuertemente visible. Las burbujas forman poca espuma
EX	> 25	Extremadamente calcáreo	Reacción extremadamente fuerte.

Revestimientos

Determine la naturaleza de los revestimientos haciendo uso de la Tabla 17.

Tabla 17. Clasificación de los revestimientos (FAO, 2009)

Código	Naturaleza
A	Arcilla
Н	Humus
CC	Carbonatos de calcio
S	Arena

PARTE III. CARACTERÍSTICAS E INTERPRETACIONES DEL PERFIL DE SUELO

En la Parte III del *Formato de evaluación*, los datos obtenidos en las partes I y II se utilizarán para evaluar el perfil de suelo. Para cada una, debe colocar una "X" en la casilla correcta.

Conductividad hidráulica

Estime la conductividad hidráulica del horizonte superficial y del horizonte limitante. Aunque es poco probable, puede ser que el horizonte superficial sea el horizonte limitante con respecto a la conductividad hidráulica. En este caso, la conductividad de la superficie se indicará como la conductividad hidráulica tanto de la superficie como de la capa límite.

Alta (A): incluye las clases texturales arenosa (A), arenosa franca (AC), franco arenosa (CA), franco-arcillo arenosa (CRA), franco limosa (CL) y francosa (C). También se considera que los horizontes que contienen > 60% de fragmentos gruesos tienen una alta conductividad hidráulica.

Moderada (M): incluye los materiales excluidos de las clases "baja" y "alta".

Baja (B): baja conductividad hidráulica se indica con cualquiera de los siguientes:

- Textura arcillosa (R), arcillo limosa (RL) o arcillo arenosa (RA), con una estructura moderada o débil; o sin estructura y masivo.
- Textura franco-arcillo limosa (CRL) y franco arcillosa (CR) que tiene una estructura débil; o sin estructura y masivo.
- Horizontes endurecidos o roca continua.

Profundidad efectiva del suelo

Las clases de profundidad del suelo se definen desde la superficie del suelo hasta el límite superior de una capa que restringe el crecimiento de las raíces. En el Formato de evaluación se registrará la profundidad a la que se encuentra (en caso de hacerlo) la capa restrictiva. Las capas restrictivas incluyen:

- Roca continua;
- Textura arcillosa (R);
- Sin estructura o masivo;
- Horizontes B con textura arcillosa (R);
- Fragmentos gruesos con más del 40% en volumen;
- Horizontes endurecidos (p. ej. Petrodúrico, petrocálcico).

Capacidad de retención de agua disponible

La cantidad de humedad almacenada en el suelo se calcula para los 100 cm superiores del perfil del suelo. Si un horizonte o capa es restrictiva (profundidad efectiva del suelo), este y todos los horizontes subyacentes deben ser excluidos del cálculo. Las clases de retención se especifican en la Tabla 18.

Tabla 18. Clases de retención de agua

Capacidad de retención de agua		
Muy baja	≤5 cm	
Baja	5.1 - 10 cm	
Moderada	10.1 - 15 cm	
Alta	> 15 cm	

La relación entre el agua disponible retenida por centímetro de suelo y las texturas es dada en la Tabla 19. Si un suelo contiene fragmentos gruesos, el volumen ocupado por los fragmentos de roca debe ser estimado y la capacidad de retención de agua disponible corregida en consecuencia. Por ejemplo, si un horizonte A es limoso (L) con 25 cm de espesor y contiene fragmentos rocosos que ocupan el 10% de su volumen, la capacidad de retención de agua disponible del horizonte sería de 25 cm \times 0.20 cm / cm \times [(100-10) / 100] = 4.50 cm de agua. Calcule el agua disponible para cada horizonte y regístrelo en el Formato de evaluación con base en la Tabla 18.

Tabla 19. Factor dependiente de las clases texturales para el análisis de la capacidad de agua

Capacidad de agua disponible (cm de agua por cm de suelo)	Clases texturales
0.05	Arenosa (A), areno francosa (AC)
0.10	Franco arenosa (CA)
0.15	Franco-arcillo arenosa (CRA), arcillo arenosa (RA), arcillo limosa (RL), francosa (C), franco arcillosa (CR), arcillosa (R)
0.20	Franco limosa (CL), limosa (L), franco-arcillo limosa (CRL)

Interpretaciones

Para un correcto y rápido análisis de las interpretaciones se debe:

- 1. Comenzar por la columna derecha de cada tabla;
- 2. Leer de abajo hacia arriba cada columna, revisando los criterios;
- 3. Si un factor de la columna derecha aplica, marque la Clase 3 en el Formato de evaluación;
- 4. Si ningún factor de la Clase 3 aplica, revise de igual forma la columna central. Si un factor de la columna central aplica, marque la Clase 2 en el Formato de evaluación;
- **5.** Si ningún factor de la Clase 2 aplica, marque la Clase 1 en la Hoja de evaluación.

Uso potencial para producción de jitomate

Factores	Idoneidad		
	Clase 1 Óptima	Clase 2 Idónea	Clase 3 Inadecuada
Clase textural en el horizonte más grueso con un límite superior < 30 cm	A, AC, CA, C	CL, L, CR, CRL, CRA	RA, RL, R
Pendiente (°)	< 2	2-15	>15
pH en los 20 cm superiores del suelo	6.2-6.7	5.0-6.1 o 6.8-7.0	<5.0 y >7.0
Conductividad hidráulica de la capa restrictiva	Alta	Moderada	Baja
Profundidad de la capa restrictiva o del cambio textural abrupto (cm)	>50	20-50	<20
Grado de erosión	NyL	М	SyE

Uso potencial para instalación de campos eólicos

Factores	Idoneidad		
	Clase 1 Óptima	Clase 2 Idónea	Clase 3 Inadecuada
Profundidad efectiva del suelo (cm)	<50	100-50	>100
Grado de erosión	N	L	Cualquier otro
Pendiente (°)	<5	5 - <20	20 o más
Capacidad de retención de agua	Muy baja	Baja o Moderada	Alta
Fragmentos gruesos (%) en los primeros 50 cm	<15	15-35	>35

Uso potencial de urbanización

Factores	Idoneidad		
	Clase 1 Óptima	Clase 2 Idónea	Clase 3 Inadecuada
Inundación	No	No	Ocurre
Pendiente (°)	<5	5 - <20	20 o más
Fragmentos gruesos (%) en los primeros 80 cm	<20	20-80	>80
Profundidad efectiva del suelo (cm)	50-80	80-100	<50

PARTE IV: CLASIFICACIÓN DE SUELO

Base referencial mundial del recurso suelo 2014 (actualización 2015)

Utilice una "X" para marcar los horizontes, las propiedades y los materiales de diagnóstico que apliquen al perfil de suelo que describe. Para más información detallada sobre horizontes, propiedades y materiales de diagnóstico revise la WRB 2014 (actualización 2015). Asimismo, se recomienda hacer uso de la "Guía para la descripción de suelos" de la FAO (2009).

Referencias

FAO (2009). Guía para la descripción de suelos. Food and Agriculture Organization of the United Nations, Rome.

International Soil Judging Contest (2014). Offical Handbook of the Inaugural International Soil Judging Contest. Jeju, Korea.

International Soil Judging Contest (2015). Offical Handbook of the International Year of Soils (IYS) 2015 Course and Soil Judging Contest. Gödöllő, Hungary.

International Soil Judging Contest (2018). Offical Handbook of the 3rd International Soil Judging Contest. Seropédica, Rio de Janeiro, Brazil.

IUSS Working Group (2015). World Reference Base for Soil Resources. World Soil Resources Report 106. Food and Agriculture Organization of the United Nations, Rome.

Olivares Martínez, L. D., Sánchez Guzmán, P., Gutiérrez Castorena, C. (2018). 1er Concurso de Evaluación Ambiental de Suelos. Manual oficial. En XLII Congreso Nacional de la Sociedad Mexicana de la Ciencia del Suelo. Texcoco, Estado de México, México.

Schoeneberger, P. J., Wysocky D. A., Benham, E. C., Soil Survey Staff (2012). Field Book for describing and sampling soils, Version 3.0., National Resources Conservation Service, National Soil Survey Center, Lincoln, NE.

Siebe, C., Jahn, R. y Stahr, K. (2009). Manual para la descripción y evaluación ecológica de suelos en el campo. 2° Edición (revisada, corregida y aumentada). Instituto de Geología, Universidad Nacional Autónoma de México, 70 p.